Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Optical I/O Technology for Tera-Scale Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Young, I.A. ; Intel Corp., Hillsboro, OR, USA ; Mohammed, E. ; Liao, J.T.S. ; Kern, A.M.
more authors

This paper describes both a near term and a long term optical interconnect solution, the first based on a packaging architecture and the second based on a monolithic photonic CMOS architecture. The packaging-based optical I/O architecture implemented with 90 nm CMOS transceiver circuits, 1 × 12 VCSEL/detector arrays and polymer waveguides achieves 10 Gb/s/channel at 11 pJ/b. A simple TX pre-emphasis technique enables a potential 18 Gb/s at 9.6 pJ/b link efficiency. Analysis predicts this architecture to reach less than 1 pJ/b at the 16 nm CMOS technology node. A photonic CMOS process enables higher bandwidth and lower energy-per-bit for chip-to-chip optical I/O through integration of electro-optical polymer based modulators, silicon nitride waveguides and polycrystalline germanium (Ge) detectors into a CMOS logic process. Experimental results for the photonic CMOS ring resonator modulators and Ge detectors demonstrate performance above 20 Gb/s and analysis predicts that photonic CMOS will eventually enable energy efficiency better than 0.3 pJ/b with 16 nm CMOS. Optical interconnect technologies such as these using multi-lane communication or wavelength division multiplexing have the potential to achieve TB/s interconnect and enable platforms suitable for the tera-scale computing era.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 1 )