By Topic

A 300 mV 494GOPS/W Reconfigurable Dual-Supply 4-Way SIMD Vector Processing Accelerator in 45 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Himanshu Kaul ; Circuit Res. Lab., Intel Corp., Hillsboro, OR, USA ; Mark A. Anders ; Sanu K. Mathew ; Steven K. Hsu
more authors

This paper describes a reconfigurable 4-way SIMD engine fabricated in 45 nm high-k/metal-gate CMOS, targeted for on-die acceleration of vector processing in power-constrained mobile microprocessors. The SIMD accelerator is reconfigured to perform 4-way 16b × 16b multiplies, 32b × 32b multiply, 4-way 16b additions, 2-way 32b additions or 72b addition with single-cycle throughput and wide supply voltage range of operation (1.3 V-230 mV). A reconfigurable 2 × 2 tile of signed 2's complement 16b multipliers, with conditional carry gating in the 72b sparse tree adder, dual-supplies for voltage hopping, and fine-grained power-gating enables peak energy efficiency of 494GOPS/W (measured at 300 mV, 50°C) with a dense layout occupying 0.081 mm2 while achieving: (i) scalable performance up to 2.8 GHz, 278 mW measured at 1.3 V; (ii) fast single-cycle switching between any operating/idle mode; (iii) configuration-dependent power reduction of up to 41% in total power and 6.5× in active leakage power; (iv) 10× standby leakage reduction during idle mode; (v) deep subthreshold operation measured at 230 mV, 8.8 MHz, 87 ¿W; and (vi) compensation for up to 3× performance variation in ultra-low voltage mode.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:45 ,  Issue: 1 )