By Topic

Analysis of Relaxation Oscillations and Gain Switching of Unidirectional Erbium-Doped Waveguide Ring Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Relaxation oscillations and gain switching of erbium-doped waveguide ring lasers (EDWRLs) are studied using numerical simulations based on time-dependent rate-propagation equations. The counter-directional wave suppression is analyzed for different waveguide ring cavity configurations and pumping schemes. It is shown that the counter-directional wave suppression in unidirectional EDWRLs undergoes relaxation oscillations synchronously with oscillating power. It is also shown that the suppression in the first spike is maximal, so the gain switching technique provides the most favorable conditions for unidirectional lasing. Furthermore, for the one-end-pumped gain-switched EDWRL, highly unidirectional operation is possible with no intracavity elements included. In this case the counter-directional wave suppression considerably exceeds its steady-state value. The gain-switched suppression caused by intracavity elements is close to the steady-state value.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 2 )