Cart (Loading....) | Create Account
Close category search window
 

Dynamics of Optically-Injected Semiconductor Lasers Using the Travelling-Wave Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stolz, C.A. ; Sch. of Comput. Sci. & Electron. Eng., Univ. of Essex, Colchester, UK ; Labukhin, D. ; Zakhleniuk, N.A. ; Adams, M.J.

The dynamics of optically-injected semiconductor lasers are of great practical interest for various applications such as chaotic signal transmission. For the first time, a method is presented to obtain a complete picture of the dynamics for optically-injected systems simulated with the travelling-wave model by investigating their trajectories. The method uses the distribution of intersection points of the trajectory on a Poincare plane to distinguish between different dynamical states of the system. It is then applied to obtain stability maps for the reflected and transmitted light of three quarter-wave-shifted distributed-feedback lasers with different Bragg coupling coefficients and it is shown that, firstly, the dynamics are different for the reflected and transmitted light and, secondly, the locking bandwidth for the case with lower Bragg coupling coefficient is significantly increased. Both findings are in agreement with published results obtained by a different analysis. The obtained stability maps are then applied to find three points inside each locking region for which the longitudinal power and carrier distributions along the cavity are displayed. These distributions are compared with the solitary laser and the relation between the Bragg coupling coefficient and its influence on the shape of the power and carrier distributions is shown.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.