Cart (Loading....) | Create Account
Close category search window
 

Effects of Zn Doped Mesa Sidewall on Gain Enhanced InGaAs/InP Heterobipolar Phototransistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ogura, Mutsuo ; Nanotechnol. Inst., Adv. Ind. Sci. & Technol. (AIST), Tsukuba, Japan ; Sung Woo Choi ; Furue, S. ; Hayama, N.
more authors

The excellent detectability of the gain enhanced InGaAs/InP heterobipolar phototransistor (GE-HPT) is demonstrated and attributed to a reduction in the reverse leakage current at the base-collector junction and the enhancement of current gain at the emitter-base junction achieved by using a current blocking structure with a Zn doped mesa sidewall. The common emitter grounded current gain agrees well with the photo-conversion efficiency of several tens of thousands of A/W at incident optical powers in the hundred nanowatt to sub-picowatt range over several orders of magnitude. The deep mesa structure in the GE-HPT is also effective in ensuring superior isolation of better than 25 dB between adjacent arrays.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.