Cart (Loading....) | Create Account
Close category search window
 

Design of a GaN White Light-Emitting Diode Through Envelope Function Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khoshnegar, M. ; Sch. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Sodagar, M. ; Eftekharian, A. ; Khorasani, S.

In this paper, we present an envelope function analysis technique for the design of the emission spectra of a white quantum-well light-emitting diode (QWLED). The nanometric heterostructure that we are dealing with is a multiple QW, consisting of periods of three single QWs with various well thicknesses. With the aid of 6 × 6 Luttinger Hamiltonian, we employ the combination of two methods, k·p perturbation and the transfer matrix method, to acquire the electron and hole wave functions numerically. The envelope function approximation was considered to obtain these wave functions for a special basis set. While adjacent valence sub-bands have been determined approximately, the conduction bands are approximated as parabolic. The effect of Stokes shift has also been taken into account. The dipole moment matrix elements for interband atomic transitions are evaluated via the correlation between the electron and hole envelope functions, for both orthogonal polarizations, thus simplifying the calculation of the photoluminescence intensity. Spatial variations in the hole/electron wave functions have been examined with the introduction of piezoelectric and spontaneous polarization internal fields. We theoretically establish the possibility of a highly efficient InGaN red emitter, resulting in a uniform luminescence in red, green, and blue emissions from a white light emitting diode by adjusting the material composition, internal field, and well thickness.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.