Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Projective Nonnegative Graph Embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaobai Liu ; Huazhong Univ. of Sci. & Technol., Wuhan, China ; Shuicheng Yan ; Hai Jin

We present in this paper a general formulation for nonnegative data factorization, called projective nonnegative graph embedding (PNGE), which 1) explicitly decomposes the data into two nonnegative components favoring the characteristics encoded by the so-called intrinsic and penalty graphs , respectively, and 2) explicitly describes how to transform each new testing sample into its low-dimensional nonnegative representation. In the past, such a nonnegative decomposition was often obtained for the training samples only, e.g., nonnegative matrix factorization (NMF) and its variants, nonnegative graph embedding (NGE) and its refined version multiplicative nonnegative graph embedding (MNGE). Those conventional approaches for out-of-sample extension either suffer from the high computational cost or violate the basic nonnegative assumption. In this work, PNGE offers a unified solution to out-of-sample extension problem, and the nonnegative coefficient vector of each datum is assumed to be projected from its original feature representation with a universal nonnegative transformation matrix. A convergency provable multiplicative nonnegative updating rule is then derived to learn the basis matrix and transformation matrix. Extensive experiments compared with the state-of-the-art algorithms on nonnegative data factorization demonstrate the algorithmic properties in convergency, sparsity, and classification power.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 5 )
Biometrics Compendium, IEEE