By Topic

Status-based Routing in Baggage Handling Systems: Searching Verses Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Johnstone, M. ; Center for Intell. Syst. Res., Deakin Univ., Waurn Ponds, VIC, Australia ; Creighton, D. ; Nahavandi, S.

This study contributes to work in baggage handling system (BHS) control, specifically dynamic bag routing. Although studies in BHS agent-based control have examined the need for intelligent control, but there has not been an effort to explore the dynamic routing problem. As such, this study provides additional insight into how agents can learn to route in a BHS. This study describes a BHS status-based routing algorithm that applies learning methods to select criteria based on routing decisions. Although numerous studies have identified the need for dynamic routing, little analytic attention has been paid to intelligent agents for learning routing tables rather than manual creation of routing rules. We address this issue by demonstrating the ability of agents to learn how to route based on bag status, a robust method that is able to function in a variety of different BHS designs.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:40 ,  Issue: 2 )