By Topic

Iterative Near Maximum-Likelihood Sequence Detection for MIMO Optical Wireless Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nestor D. Chatzidiamantis ; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Murat Uysal ; Theodoros A. Tsiftsis ; George K. Karagiannidis

A major performance-limiting factor in terrestrial optical wireless (OW) systems is turbulence-induced fading. Exploiting the additional degrees of freedom in the spatial dimension, multiple laser transmitters combined with multiple receive apertures provide an effective solution for fading mitigation. Although multiple-input multiple-output (MIMO) OW systems have been extensively studied in recent years, most of these works are mainly limited to symbol-by-symbol decoding. MLSD exploits the temporal correlation of turbulence-induced fading and promises further performance gains. In this paper, we investigate MLSD for intensity-modulation/direct-detection MIMO OW systems over log-normal atmospheric turbulence channels. Even with a low-order modulation scheme such as OOK, which is typically used in OW systems, the complexity of MLSD might be prohibitive. We therefore present an iterative sequence detector based on the expectation-maximization (EM) algorithm. The complexity of the proposed algorithm is considerably less than a direct evaluation of the log-likelihood function, and it is independent of the channel's fading statistics. The Monte Carlo simulation results demonstrate that the EM-based algorithm outperforms the symbol-by-symbol decoder and achieves a performance, which lies within 0.3 dB of that of the optimal MLSD.

Published in:

Journal of Lightwave Technology  (Volume:28 ,  Issue: 7 )