By Topic

An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Syed Muhammad Raza Kazmi ; Department of Electrical & Communication Engineering, Tohoku University, Japan ; Hiroki Goto ; Osamu Ichinokura ; Hai-Jiao Guo

Maximum power point tracking (MPPT) is a very important necessity in a system of energy conversion from a renewable energy source. Many research papers have been produced with various schemes over past decades for the MPPT in photovoltaic (PV) system. This research paper inspires its motivation from the fact that the keen study of these existing techniques reveals that there is still quite a need for an absolutely generic and yet very simple MPPT controller which should have all the following traits: total independence from system's parameters, ability to reach the global maxima in minimal possible steps, the correct sense of tracking direction despite the abrupt atmospheric or parametrical changes, and finally having a very cost-effective and energy efficient hardware with the complexity no more than that of a minimal MPPT algorithm like Perturb and Observe (P&O). The MPPT controller presented in this paper is a successful attempt to fulfil all these requirements. It extends the MPPT techniques found in the recent research papers with some innovations in the control algorithm and a simplistic hardware. The simulation results confirm that the proposed MPPT controller is very fast, very efficient, very simple and low cost as compared to the contemporary ones.

Published in:

Power Engineering Conference, 2009. AUPEC 2009. Australasian Universities

Date of Conference:

27-30 Sept. 2009