Cart (Loading....) | Create Account
Close category search window
 

Feature selection and classification in genetic programming: Application to haptic-based biometric data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alsulaiman, F.A. ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON, Canada ; Sakr, N. ; Valde, J.J. ; El Saddik, A.
more authors

In this paper, a study is conducted in order to explore the use of genetic programming, in particular gene expression programming (GEP), in finding analytic functions that can behave as classifiers in high-dimensional haptic feature spaces. More importantly, the determined explicit functions are used in discovering minimal knowledge-preserving subsets of features from very high dimensional haptic datasets, thus acting as general dimensionality reducers. This approach is applied to the haptic-based biometrics problem; namely, in user identity verification. GEP models are initially generated using the original haptic biometric datatset, which is imbalanced in terms of the number of representative instances of each class. This procedure was repeated while considering an under-sampled (balanced) version of the datasets. The results demonstrated that for all datasets, whether imbalanced or under-sampled, a certain number (on average) of perfect classification models were determined. In addition, using GEP, great feature reduction was achieved as the generated analytic functions (classifiers) exploited only a small fraction of the available features.

Published in:

Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on

Date of Conference:

8-10 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.