Cart (Loading....) | Create Account
Close category search window
 

Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shen, L. ; Med. Center, Dept. of Pharmacology, Vanderbilt Univ., Nashville, TN, USA ; Caruso, G. ; Bisegna, P. ; Andreucci, D.
more authors

The deep understanding of the biochemical and biophysical basis of visual transduction, makes it ideal for systems-level analysis. A sensitivity analysis is presented for a self-consistent set of parameters involved in mouse phototransduction. The organising framework is a spatio-temporal mathematical model, which includes the geometry of the rod outer segment (ROS), the layered array of the discs, the incisures, the biochemistry of the activation/deactivation cascade and the biophysics of the diffusion of the second messengers in the cytoplasm and the closing of the cyclic guanosine monophosphate (cGMP) gated cationic channels. These modules include essentially all the relevant geometrical, biochemical and biophysical parameters. The parameters are selected from within experimental ranges, to obey basic first principles such as conservation of mass and energy fluxes. By means of the model they are compared to a large set of experimental data, providing a strikingly close match. Following isomerisation of a single rhodopsin R* (single photon response), the sensitivity analysis was carried out on the photo-response, measured both in terms of number of effector molecules produced, and photocurrent suppression, at peak time and the activation and recovery phases of the cascade. The current suppression is found to be very sensitive to variations of the catalytic activities, Hill's coefficients and hydrolysis rates and the geometry of the ROS, including size and shape of the incisures. The activated effector phosphodiesterase (PDE*) is very sensitive to variations of catalytic activity of G-protein activation and the average lifetimes of activated rhodopsin R* and PDE*; however, they are insensitive to geometry and variations of the transduction parameters. Thus the system is separated into two functional modules, activation/deactivation and transduction, each confined in different geometrical domains, communicating through the hydrolysis of cGMP by PDE*, and each sens- tive to variations of parameters only in its own module.

Published in:

Systems Biology, IET  (Volume:4 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.