By Topic

DNA-Coated Nanosensors for Breath Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. T. Charlie Johnson ; Dept. of Phys. & Astron., Univ. of Pennsylvania, Philadelphia, PA, USA ; Samuel M. Khamis ; George Preti ; Jae Kwak
more authors

The analysis of breath and body odors can provide valuable information relevant to disease detection, diagnosis and treatment. A variety of technical developments are being pursued to develop electronic devices intended to analyze volatile components of breath and body odors with the sensitivity, selectivity, and learning ability of high-end mammalian olfactory systems. Here, we describe a new sensor technology that has the potential to supply a large set of diverse and sensitive odorant sensors with electronic readout to provide information-rich odorant-elicited signals for analysis by pattern recognition algorithms. In addition, we demonstrate that these sensors can provide discrimination of odorant homologues consisting of aldehydes and organic acids commonly found in human breath and other body emanations over a range of concentrations.

Published in:

IEEE Sensors Journal  (Volume:10 ,  Issue: 1 )