By Topic

Multipitch Estimation of Piano Sounds Using a New Probabilistic Spectral Smoothness Principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Emiya, V. ; Metiss Team, Centre Inria Rennes-Bretagne Atlantique, Rennes, France ; Badeau, R. ; David, B.

A new method for the estimation of multiple concurrent pitches in piano recordings is presented. It addresses the issue of overlapping overtones by modeling the spectral envelope of the overtones of each note with a smooth autoregressive model. For the background noise, a moving-average model is used and the combination of both tends to eliminate harmonic and sub-harmonic erroneous pitch estimations. This leads to a complete generative spectral model for simultaneous piano notes, which also explicitly includes the typical deviation from exact harmonicity in a piano overtone series. The pitch set which maximizes an approximate likelihood is selected from among a restricted number of possible pitch combinations as the one. Tests have been conducted on a large homemade database called MAPS, composed of piano recordings from a real upright piano and from high-quality samples.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 6 )