By Topic

Efficient Compression of Encrypted Grayscale Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Liu ; U.S. Res. Center, Sony Electron., San Jose, CA, USA ; Zeng, Wenjun ; Lina Dong ; Qiuming Yao

Lossless compression of encrypted sources can be achieved through Slepian-Wolf coding. For encrypted real-world sources, such as images, the key to improve the compression efficiency is how the source dependency is exploited. Approaches in the literature that make use of Markov properties in the Slepian-Wolf decoder do not work well for grayscale images. In this correspondence, we propose a resolution progressive compression scheme which compresses an encrypted image progressively in resolution, such that the decoder can observe a low-resolution version of the image, study local statistics based on it, and use the statistics to decode the next resolution level. Good performance is observed both theoretically and experimentally.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )