Cart (Loading....) | Create Account
Close category search window
 

Convex Optimization for Nonrigid Stereo Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shuhan Shen ; Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai, China ; Wenjuan Ma ; Wenhuan Shi ; Yuncai Liu

We present a method for recovering 3-D nonrigid structure from an image pair taken with a stereo rig. More specifically, we dedicate to recover shapes of nearly inextensible deformable surfaces. In our approach, we represent the surface as a 3-D triangulated mesh and formulate the reconstruction problem as an optimization problem consisting of data terms and shape terms. The data terms are model to image keypoint correspondences which can be formulated as second-order cone programming (SOCP) constraints using L ?? norm. The shape terms are designed to retaining original lengths of mesh edges which are typically nonconvex constraints. We will show that this optimization problem can be turned into a sequence of SOCP feasibility problems in which the nonconvex constraints are approximated as a set of convex constraints. Thanks to the efficient SOCP solver, the reconstruction problem can then be solved reliably and efficiently. As opposed to previous methods, ours neither involves smoothness constraints nor need an initial estimation, which enables us to recover shapes of surfaces with smooth, sharp and other complex deformations from a single image pair. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.