By Topic

The Lifting Scheme for Wavelet Bi-Frames: Theory, Structure, and Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoyuan Yang ; Key Lab. of Math., Inf., & Behavioral Semantics, Minist. of Educ., China ; Yan Shi ; Liuhe Chen ; Zongfeng Quan

In this paper, we present the lifting scheme of wavelet bi-frames along with theory analysis, structure, and algorithm. We show how any wavelet bi-frame can be decomposed into a finite sequence of simple filtering steps. This decomposition corresponds to a factorization of a polyphase matrix of a wavelet bi-frame. Based on this concept, we present a new idea for constructing wavelet bi-frames. For the construction of symmetric bi-frames, we use generalized Bernstein basis functions, which enable us to design symmetric prediction and update filters. The construction allows more efficient implementation and provides tools for custom design of wavelet bi-frames. By combining the different designed filters for the prediction and update steps, we can devise practically unlimited forms of wavelet bi-frames. Moreover, we present an algorithm of increasing the number of vanishing moments of bi-framelets to arbitrary order via the presented lifting scheme, which adopts an iterative algorithm and ensures the shortest lifting scheme. Several construction examples are given to illustrate the results.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )