Cart (Loading....) | Create Account
Close category search window
 

Nonlinear Non-Negative Component Analysis Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zafeiriou, S. ; Dept. of Electr. & Electron. Eng., Imperial Coll. London, London, UK ; Petrou, M.

In this, paper general solutions for nonlinear non-negative component analysis for data representation and recognition are proposed. Motivated by a combination of the non-negative matrix factorization (NMF) algorithm and kernel theory, which has lead to a recently proposed NMF algorithm in a polynomial feature space, we propose a general framework where one can build a nonlinear non-negative component analysis method using kernels, the so-called projected gradient kernel non-negative matrix factorization (PGKNMF). In the proposed approach, arbitrary positive definite kernels can be adopted while at the same time it is ensured that the limit point of the procedure is a stationary point of the optimization problem. Moreover, we propose fixed point algorithms for the special case of Gaussian radial basis function (RBF) kernels. We demonstrate the power of the proposed methods in face and facial expression recognition applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )
Biometrics Compendium, IEEE

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.