Cart (Loading....) | Create Account
Close category search window

Assessment of stress contributions in GaN high electron mobility transistors of differing substrates using Raman spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beechem, T. ; GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA ; Christensen, Adam ; Green, D.S. ; Graham, S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The capability of gallium nitride (GaN) high power transistors arises, in large part, due to piezoelectric polarizations that induce the formation of a carrier rich two-dimensional electron gas. These polarizations, in turn, are directly related to the strain and hence stress that is present within the transistor. As a consequence, the stress load, as well as its measurement, is extremely important to the optimization of this device class. In response, this study demonstrates a technique to quantify the magnitude of operational thermoelastic stress that evolves in a GaN transistor through simultaneous use of the Raman signal’s Stokes peak position and linewidth. After verifying the technique through comparison with a finite element model, the method is then utilized in the analysis of high electron mobility transistors grown on silicon (Si) and silicon carbide (SiC) substrates. For each series of device, the major stress contributors—thermoelastic, converse piezoelectric, and residual—are acquired and compared. While the magnitudes of the components are larger in those devices grown on silicon, the resultant biaxial loads in each of the devices are comparable at high power levels as the dominant residual tensile stress is counterbalanced by the compressive thermoelastic contribution.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 11 )

Date of Publication:

Dec 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.