By Topic

Mobile robot self-localization system using IR-UWB sensor in indoor environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Segura, M.J. ; Inst. of Automatics, Nat. Univ. of San Juan, San Juan, Argentina ; Mut, V.A. ; Patino, H.D.

Robot localization is a fundamental problem in mobile robotics. This paper proposes the use of a new type of sensor that permits accurate localization in indoor environments. An impulse radio (IR) ultra wide-band (UWB) sensor uses very short baseband pulses for transmission. This sensor facilitates the development of indoor location and tracking applications based on time of arrival estimation with great accuracy. There are many different sensors and techniques that have been proposed for indoor localization; however they usually have large errors in non line of sight (NLOS) conditions or with certain environment conditions. The objective of this paper is to propose a self-localization system based on time of arrival (TOA) estimation algorithm that permits precise localization in indoor environments with obstructed line of sight. This work proposes a new wavelet cyclic cross correlation strategy for time of arrival estimation based on non-coherent receiver structure and sliding correlation techniques for multiple user differentiation. The simulation results show that the propose localization system overcome the problems of NLOS conditions and makes possible the mobile robot localization with small number of base stations.

Published in:

Robotic and Sensors Environments, 2009. ROSE 2009. IEEE International Workshop on

Date of Conference:

6-7 Nov. 2009