By Topic

AutoRex: An automated post-silicon clock tuning tool

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Tadesse ; Brown University, Division of Engineering, Providence, RI 02912, USA ; J. Grodstein ; R. I. Bahar

Post-silicon clock-tuning is a technique used as part of speed-debug efforts to increase the allowable clock frequency of a chip. These days, it is not uncommon for high-end microprocessors to have cores containing a few thousand clock-tuning elements (i.e., variable-delay buffers). Each such buffer can be assigned to one of several possible discrete delay values, as part of the post-silicon speed debugging process. With the proper mix of assignments, many chips that initially could not meet targeted speed requirements, can now run within specification. With thousands of tunable buffers available on chip, the possible combination of assignments to the delay values is quite large. In addition, process variation causes the same design, once fabricated into silicon, to have different critical paths across different chips. Thus a specific buffer-delay assignment that most improves clock frequency for some chips may not be optimal for all chips. In this paper, we propose a tool we call AutoRex, that produces clock-tuning assignments automatically. AutoRex operates by taking data from a volume experiment across multiple process corners and analyzes this data using satisfiability modulo theory (SMT) solvers to create a single ¿recipe¿ for delay buffer assignments such that the clock frequency of the chip is improved as much as possible over the entire sample of chips. Our results show up to a 9% improvement in frequency using AutoRex.

Published in:

2009 International Test Conference

Date of Conference:

1-6 Nov. 2009