By Topic

Probability of small-signal stability of power systems in the presence of communication delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ayasun, S. ; Dept. of Electr. & Electron. Eng., Nigde Univ., Nigde, Turkey ; Nwankpa, C.O.

This paper presents a probabilistic approach to evaluate the small-signal stability of power systems in the presence of communication delays. An exact method is first proposed to determine the relationship between delay margin and system parameters such as the system load. The delay margin is then modeled as a random variable and the probability density function (PDF) of the delay margin is determined based on the PDF of the load using a Monte Carlo simulation approach. The communication delays are assumed to be uniformly distributed in a practical range and the probability of system being small-signal stable for a given time delay is determined using the estimated PDF of the delay margin. The proposed method is applied to a single-machine-infinite bus (SMIB) power system with an exciter.

Published in:

Electrical and Electronics Engineering, 2009. ELECO 2009. International Conference on

Date of Conference:

5-8 Nov. 2009