By Topic

Cognitive Radio-based Wireless Sensor Networks: Conceptual design and open issues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yau, K.-L.A. ; Sch. of Eng. & Comput. Sci., Victoria Univ. of Wellington, Wellington, New Zealand ; Komisarczuk, P. ; Teal, P.D.

Traditional static spectrum allocation policies have been to grant each wireless service exclusive usage of certain frequency bands, leaving several spectrum bands unlicensed for industrial, scientific and medical purposes. The rapid proliferation of low-cost wireless applications in unlicensed spectrum bands has resulted in spectrum scarcity among those bands. Since most applications in Wireless Sensor Networks (WSNs) utilize the unlicensed spectrum, network-wide performance of WSNs will inevitably degrade as their popularity increases. Sharing of under-utilized licensed spectrum among unlicensed devices is a promising solution to the spectrum scarcity issue. Cognitive Radio (CR) is a new paradigm in wireless communication that allows sensor nodes as the unlicensed users or Secondary Users (SUs) to detect and use the under-utilized licensed spectrum temporarily. Given that the licensed or Primary Users (PUs) are oblivious to the presence of SUs, the SUs access the licensed spectrum opportunistically without interfering the PUs, while improving their own performance. In this paper, we propose an approach to build Cognitive Radio-based Wireless Sensor Networks (CR-WSNs). We believe that CR-WSN is the next-generation WSN. Realizing that both WSNs and CR present unique challenges to the design of CR-WSNs, we provide an overview and conceptual design of WSNs from the perspective of CR. The open issues are discussed to motivate new research interests in this field. We also present our method to achieving context-awareness and intelligence, which are the key components in CR networks, to address an open issue in CR-WSN.

Published in:

Local Computer Networks, 2009. LCN 2009. IEEE 34th Conference on

Date of Conference:

20-23 Oct. 2009