By Topic

Safe human robot interaction via energy regulation control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matteo Laffranchi ; Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy ; N. G. Tsagarakis ; Darwin G. Caldwell

This paper presents an energy-based control strategy to be used in robotic systems working closely or cooperating with humans. The presented method bounds the dangerous behavior of the robot during the first instants of the impact by limiting the energy stored into the system to a maximum imposed value.Two critical physical human robot interaction (pHRI) cases are studied, these are the collision either against a free or a clamped head. Safe energy values that can be used as reference were retrieved by analysing experimental data of energy absorption to failure of cranium bones and cervical spinal cords.The energy regulation control is implemented in a series elastic actuator prototype joint. The model and the control scheme of the system are analysed. The proposed control scheme is a position-based controller that adjusts the position trajectory reference in function of the maximum energy value imposed by the user. Preliminary results are presented to show that the actuator unit and this control scheme are capable of limiting the energy to a maximum imposed value.

Published in:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

10-15 Oct. 2009