By Topic

Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyun Soo Park ; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA ; Metin Sitti

A quadrupedal water runner robot inspired by the basilisk lizard has previously demonstrated the capability of water surface locomotion. Since the robot is aimed for the amphibious locomotion, a compatible design on both ground and water surface is discussed in this paper. A compliant footpad which can transfer elastic energy to propulsive momentum is introduced and modeled using a pseudo-rigid-body model. Dynamic modeling of the footpad and the robot provides a criterion of efficient ground locomotion. For the water surface locomotion, drag force can be reduced by compliance of the footpad. The optimized design taking into account two locomotions is studied and analyzed for stability using the Poincare map.

Published in:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

10-15 Oct. 2009