By Topic

A path planning algorithm for UAVs with limited climb angle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Armando A. Neto ; Vision and Robotics Laboratory (Verlab), Computer Science Department, Federal University of Minas Gerais, Brazil ; Mario F. M. Campos

In this paper we present a methodology based on a variation of the spatial pythagorean hodograph curves to generate smooth feasible paths for autonomous vehicles in three-dimensional space under the restriction of limited climb angles. An fast iterative algorithm is used to calculate the curve. The generated path satisfy three main angular constraints given by the vehicle: (i) maximum curvature, (ii) maximum torsion and (iii) maximum climb (or dive). A path is considered feasible if these kinematic constraints are not violated. The smoothness vehicle's acceleration profile is indirectly guaranteed between two points. The proposed methodology is applicable to vehicles that move in three-dimensional environments, and that can be modeled by the constraints considered here. We show results for small aerial vehicle.

Published in:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

10-15 Oct. 2009