By Topic

DASH: A dynamic 16g hexapedal robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Birkmeyer, P. ; Dept. of Electr. Engingeering & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Peterson, K. ; Fearing, R.S.

DASH is a small, lightweight, power autonomous robot capable of running at speeds up to 15 body lengths per second (see video). Drawing inspiration from biomechanics, DASH has a sprawled posture and uses an alternating tripod gait to achieve dynamic open-loop horizontal locomotion. The kinematic design which uses only a single drive motor and allows for a high power density is presented. The design is implemented using a scaled Smart Composite Manufacturing (SCM) process. Evidence is given that DASH runs with a gait that can be characterized using the spring-loaded inverted pendulum (SLIP) model. In addition to being fast, DASH is also well suited to surviving falls from large heights, due to the uniquely compliant nature of its structure.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009