By Topic

Development of assisted-robotic system designed to measure the Wave Intensity with an ultrasonic diagnostic device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Nakadate, R. ; Grad. Sch. of Adv. Sci. & Eng., Waseda Univ., Tokyo, Japan ; Uda, H. ; Hirano, H. ; Solis, J.
more authors

In recent years, due to the increasing rate of elderly people in Japan, the needs to detect adults' diseases at the early stage becomes a high priority. In particular, an increased interest in detecting heart and cerebrovascular diseases at an early stage may allow clinicians to begin treatment sooner, when interventions are generally more effective and less expensive. Recently, the wave intensity (WI) has been proposed as a new hemodynamic index that provides information about the dynamic behavior of the heart and the vascular system and their interaction. However; the repetitiveness and accuracy of the WI measurement depend on the precision of the positioning of the ultrasound probe. Therefore a positioning device for ultrasound probe is required. Such a device should not only be used to keep the position but also for the fine positioning of the probe. For this purpose, at Waseda University, we have proposed the development of a robot system to assist a carotid blood flow measurement using ultrasound diagnostic equipments. In this paper, the development of Waseda-Tokyo Women's Medical-Aloka Blood Flow Measurement System No. 1 Refined II (WTA-1RII) is detailed. The system consists of an ultrasound diagnostic device, a 6-DOFs parallel link manipulator, a serial link passive arm, ball joint, and a joystick type controller. The WTA-1RII has improved the design of the gravity compensation mechanism. In addition, a genetic algorithm has by implemented to determine the optimal link's position of the 6-DOFs parallel manipulator to increase the workspace. Finally, a set of experiments were carried out to determine the usability of the proposed system.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009