By Topic

On the performance of random linear projections for sampling-based motion planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sucan, I.A. ; Dept. of Comput. Sci., Rice Univ., Houston, TX, USA ; Kavraki, L.E.

Sampling-based motion planners are often used to solve very high-dimensional planning problems. Many recent algorithms use projections of the state space to estimate properties such as coverage, as it is impractical to compute and store this information in the original space. Such estimates help motion planners determine the regions of space that merit further exploration. In general, the employed projections are user-defined, and to the authors' knowledge, automatically computing them has not yet been investigated. In this work, the feasibility of offline-computed random linear projections is evaluated within the context of a state-of-the art sampling-based motion planning algorithm. For systems with moderate dimension, random linear projections seem to outperform human intuition. For more complex systems it is likely that non-linear projections would be better suited.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009