By Topic

Robust on-line model-based object detection from range images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Steder, B. ; Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany ; Grisetti, G. ; Van Loock, M. ; Burgard, W.

A mobile robot that accomplishes high level tasks needs to be able to classify the objects in the environment and to determine their location. In this paper, we address the problem of online object detection in 3D laser range data. The object classes are represented by 3D point-clouds that can be obtained from a set of range scans. Our method relies on the extraction of point features from range images that are computed from the point-clouds. Compared to techniques that directly operate on a full 3D representation of the environment, our approach requires less computation time while retaining the robustness of full 3D matching. Experiments demonstrate that the proposed approach is even able to deal with partially occluded scenes and to fulfill the runtime requirements of online applications.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009