By Topic

Biologically inspired control for robotic arm using neural oscillator network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Woosung Yang ; Center for Cognitive Robot. Res., Korea Inst. of Sci. & Technol., Seoul, South Korea ; Ji-Hun Bae ; Yonghwan Oh ; Nak Young Chong
more authors

It is known that biologically inspired neural systems could exhibit natural dynamics efficiently and robustly for motion control, especially for rhythmic motion tasks. In addition, humans or animals exhibit natural adaptive motions without considering their kinematic configurations against unexpected disturbances or environment changes. In this paper, we focus on rhythmic arm motions that can be achieved by using a controller based on neural oscillators and virtual force. In comparison with conventional researches, this work treats neither trajectories planning nor inverse kinematics. Instead of those, a few desired points in task-space and a control method with Jacobian transpose and joint velocity damping are merely adopted. In addition, if the joints of robotic arms are coupled to neural oscillators, they may be capable of achieving biologically inspired motions corresponding to environmental changes. To verify the proposed control scheme, we perform some simulations to trace a desired motion and show the potential features related with self-adaptation that enables a three-link planar arm to make adaptive changes from the given motion to a compliant motion. Specifically, we investigate that human-like movements and motion repeatability are satisfied under kinematic redundancy of joints.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009