Cart (Loading....) | Create Account
Close category search window
 

A statistical approach to gas distribution modelling with mobile robots - The Kernel DM+V algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lilienthal, A.J. ; Dept. of Technol., Orebro Univ., Orebro, Sweden ; Reggente, M. ; Trincavelli, M. ; Blanco, J.L.
more authors

Gas distribution modelling constitutes an ideal application area for mobile robots, which - as intelligent mobile gas sensors - offer several advantages compared to stationary sensor networks. In this paper we propose the Kernel DM+V algorithm to learn a statistical 2-d gas distribution model from a sequence of localized gas sensor measurements. The algorithm does not make strong assumptions about the sensing locations and can thus be applied on a mobile robot that is not primarily used for gas distribution monitoring, and also in the case of stationary measurements. Kernel DM+V treats distribution modelling as a density estimation problem. In contrast to most previous approaches, it models the variance in addition to the distribution mean. Estimating the predictive variance entails a significant improvement for gas distribution modelling since it allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. Estimating the predictive variance also provides the means to learn meta parameters and to suggest new measurement locations based on the current model. We derive the Kernel DM+V algorithm and present a method for learning the hyper-parameters. Based on real world data collected with a mobile robot we demonstrate the consistency of the obtained maps and present a quantitative comparison, in terms of the data likelihood of unseen samples, with an alternative approach that estimates the predictive variance.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.