By Topic

Energy dissipation in general purpose microprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gonzalez, R. ; Comput. Syst. Lab., Stanford Univ., CA, USA ; Horowitz, M.

In this paper we investigate possible ways to improve the energy efficiency of a general purpose microprocessor. We show that the energy of a processor depends on its performance, so we chose the energy-delay product to compare different processors. To improve the energy-delay product we explore methods of reducing energy consumption that do not lead to performance loss (i.e. wasted energy), and explore methods to reduce delay by exploiting instruction level parallelism. We found that careful design reduced the energy dissipation by almost 25%. Pipelining can give approximately a 2× improvement in energy-delay product. Superscalar issue, however, does not improve the energy-delay product any further since the overhead required offsets the gains in performance. Further improvements will be hard to come by since a large fraction of the energy (50-80%) is dissipated in the clock network and the on-chip memories. Thus, the efficiency of processors will depend more on the technology being used and the algorithm chosen by the programmer than the micro-architecture

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:31 ,  Issue: 9 )