By Topic

Development of the two-wheeled inverted pendulum type mobile robot WV-2R for educational purposes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Solis, J. ; Dept. of Modern Mech. Eng., Waseda Univ., Tokyo, Japan ; Nakadate, R. ; Yoshimura, Y. ; Hama, Y.
more authors

The rapidly increase of personal robotic platforms and their applications in Japan represents a great challenge for universities to introduce undergraduate students the basic knowledge required to develop intelligent automated mechanisms. For this purpose; in this paper, we are presenting our approach to introduce first year undergraduate students of the Department of Modern Mechanical Engineering the basics of robotics systems. In order to foster the creativity of undergraduate students of engineering fields, we focused in developing an education tool designed to introduce at different educational levels the principle of developing mechatronic systems. In particular, the development of an inverted pendulum mobile robot Waseda Wheeled Vehicle No. 2 (WV-2R) has been proposed. Different kinds of experiments were proposed to confirm the possibility of implementing controllers as well as changing physical properties of the system to observe differences on the response of the system. From the experimental results, we could confirm the effectiveness of the proposed systems to control the angle of pendulum respect to the body base as well as by changing the radius of the wheel.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009