By Topic

Comparative study of representations for segmentation of whole body human motion data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kulic, D. ; Dept. of Mechano-Inf., Univ. of Tokyo, Tokyo, Japan ; Nakamura, Y.

In previous work, the authors have been developing a stochastic model based approach for on-line segmentation of whole body human motion patterns during human motion observation and learning, using a simplified kinematic model of the human body. In this paper, we extend the proposed approach to larger, more realistic kinematic models, which can better represent a larger variety of human motions. These larger models may include spherical in addition to revolute joints. We examine the effects on segmentation performance due to motion representation choice, and compare the segmentation efficacy when Cartesian or joint angle data is used. The approach is tested on whole body human motion data modeled with a 42DoF kinematic model. The results indicate that Cartesian data seems to correspond most closely to the human evaluation of segment points. The experiments also demonstrate the efficacy of the segmentation approach for large kinematic models and a variety of human motions.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009