By Topic

Mathematical modeling of the prediction mechanism of sensory processing in the context of a Bayes filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoxuan Zhang ; Coll. of Inf. & Commun., Hanyang Univ., Seoul, South Korea ; Il Hong Suh

Prediction is a very important element of human intelligence and plays a major role in human behavior, perception, and learning. This paper presents the development of a mathematical model of the prediction mechanism in the context of a Bayes filter, which is the predominant schema used for integrating temporal data in the field of robot mapping and localization problems. We propose a generalized anticipatory Bayes filter that uses revised sensor values obtained from the prediction process at the measurement-update step to enhance the performance of the sensor model. The development of a generalized anticipatory Bayes filter is not only an extension of the original Bayes filter, but also a mathematical model of the human prediction mechanism of sensory processing. This work was verified by experiments using observed data.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009