Cart (Loading....) | Create Account
Close category search window

Hopping sensor relocation in rugged terrains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuanteng Pei ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Cintron, F.J. ; Mutka, Matt W. ; Jianguo Zhao
more authors

Hopping sensors are a type of low cost mobile sensors that are small in size, have limited capability and imprecise movement. However, their unique method of movement makes them suitable for rugged terrains. Sensors may fail when deployed in a rugged terrain or in an obstacle-abundant environment. Therefore, redundant sensors may be identified and relocated to the sensor holes. This paper addresses the problem of relocating such capability-constrained sensors in an obstructive environment. We propose an enhanced quorum-grid solution with binary splitting message forwarding (BSMF), which is decentralized and can detect both existing and newly appearing obstructions in the supplier and consumer cells matching process. Furthermore, a grid-based movement model is introduced for the hopping sensors. Simulation shows that our scheme significantly reduces the communication overhead and achieves relatively constant total energy consumption with varying amount of obstructions.

Published in:

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

Date of Conference:

10-15 Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.