By Topic

Fragility Analysis of Adaptive Quantization-Based Image Hashing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guopu Zhu ; Sch. of Inf. Sci. & Technol., Sun Yat-Sen Univ., Guangzhou, China ; Jiwu Huang ; Sam Kwong ; Jianquan Yang

Fragility is one of the most important properties of authentication-oriented image hashing. However, to date, there has been little theoretical analysis on the fragility of image hashing. In this paper, we propose a measure called expected discriminability for the fragility of image hashing and study this fragility theoretically based on the proposed measure. According to our analysis, when Gray code is applied into the discrete-binary conversion stage of image hashing, the value of the expected discriminability, which is dominated by the quantization stage of image hashing, is no more than 1/2. We further evaluate the expected discriminability of the image-hashing scheme that uses adaptive quantization, which is the most popular quantization scheme in the field of image hashing. Our evaluation reveals that if deterministic adaptive quantization is applied, then the expected discriminability of the image-hashing scheme can reach the maximum value (i.e., 1/2). Finally, some experiments are conducted to validate our theoretical analysis and to compare the performance of several quantization schemes for image hashing.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:5 ,  Issue: 1 )