By Topic

A Family of Fuzzy Learning Algorithms for Robust Principal Component Analysis Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Cheng Lv ; Machine Intell. Lab., Sichuan Univ., Chengdu, China ; Kok Kiong Tan ; Zhang Yi ; Sunan Huang

In this paper, we analyze Xu and Yuille's robust principal component analysis (RPCA) learning algorithms by means of the distance measurement in space. Based on the analysis, a family of fuzzy RPCA learning algorithms is proposed, which is robust against outliers. These algorithms can explicitly be understood from the viewpoint of fuzzy set theory, though Xu and Yuille's algorithms were proposed based on a statistical physics approach. In the proposed algorithms, an adaptive learning procedure overcomes the difficulty of selection of learning parameters in Xu and Yuille's algorithms. Furthermore, the robustness of proposed algorithms is investigated by using the theory of influence functions. Simulations are carried out to illustrate the robustness of these algorithms.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 1 )