Cart (Loading....) | Create Account
Close category search window
 

A Broadband and Miniaturized Common-Mode Filter for Gigahertz Differential Signals Based on Negative-Permittivity Metamaterials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Hao Tsai ; Dept. of Electr. of Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Tzong-Lin Wu

A novel wideband and miniaturized common-mode noise suppression filter is proposed based on the concept of an effective negative-permittivity metamaterial (MM) transmission line (TL). The propagation properties for the odd and even modes in the proposed structure are derived from the TL theory and Bloch theorem. Two- and four-port equivalent-circuit models are developed to explain the common-mode suppression characteristics. The dispersion relation has a good agreement with the full-wave simulation and measurement result. Based on the low-temperature co-fired ceramic fabrication technology, miniaturized common-mode filters with four and eight cells are realized using the concept of the effective negative-permittivity MM. For the four-cell structure, the filter size is 0.16 ??g ?? 0.26 ??g with the corresponding real size of 3.2 mm ?? 5.12 mm. It is found that the common-mode noise can be reduced over 10 dB from 3.8 to 7.1 GHz with the fractional bandwidth of 60% in the frequency domain, and is reduced over 50% for voltage amplitude in the time domain. More importantly, the differential signal integrity, in terms of insertion loss and group delay in the frequency domain and eye diagrams in the time domain, is not degraded within the wide stopband. To our best knowledge, it is the first broadband common-mode filter designed for gigahertz differential signals based on the concept of MM TL with most compact size.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.