By Topic

A Fully Integrated Built-In Self-Test \Sigma {-}\Delta ADC Based on the Modified Controlled Sine-Wave Fitting Procedure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hao-Chiao Hong ; Department of Electrical Engineering, National Chiao Tung University, Hsinchu , Taiwan ; Fang-Yi Su ; Shao-Feng Hung

This paper demonstrates the first fully integrated built-in self-test (BIST) Σ-Δ analog-to-digital converter (ADC) chip to the best of our knowledge. The ADC under test (AUT) comprises a second-order design-for-digital-testability Σ-Δ modulator and a decimation filter. The purely digital BIST circuitry conducts single-tone tests for the signal-to-noise-and-distortion ratio (SNDR), the dynamic range, the offset, and the gain error of the AUT. The BIST design is based on the proposed modified controlled sine-wave fitting procedure to address the component overload issues, reduce the setup parameter numbers, and eliminate the need for parallel multipliers. The total gate count of the whole BIST circuitry is only 13 300. The hardware overhead is much less than the BIST design using the traditional fast Fourier transform (FFT) analysis. Measurement results show that the peak SNDR results of the proposed BIST design and the conventional FFT analysis are 75.5 and 75.3 dB, respectively. The subtle SNDR difference is already within analog test uncertainty. The BIST Σ-Δ ADC achieves a digital test bandwidth higher than 17 kHz, very close to the rated 20-kHz bandwidth of the AUT.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:59 ,  Issue: 9 )