By Topic

Integral Sliding-Mode Direct Torque Control of Doubly-Fed Induction Generators Under Unbalanced Grid Voltage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Si Zhe Chen ; Coll. of Electr. Power, South China Univ. of Technol., Guangzhou, China ; Cheung, N.C. ; Ka Chung Wong ; Jie Wu

An integral sliding-mode direct torque control (ISM-DTC) scheme with space-vector modulation for wind-energy conversion systems based on doubly-fed induction generators (DFIGs) under unbalanced grid voltage is proposed. The torque and power pulsations at twice the grid frequency caused by unbalanced grid voltage can be minimized by the proposed ISM-DTC scheme. Compared with existing control schemes of DFIGs under unbalanced grid voltage, the parametric uncertainties are included into the design procedure of sliding-mode controller, which guarantees the robustness of the controller. Because the torque and reactive power are directly controlled by the rotor voltage, the measurement, coordinate transformation, and symmetrical component extraction of rotor current are eliminated, which simplifies the structure of the controller. Simulation and hardware implementation results validate the effect and parametric robustness of the proposed ISM-DTC scheme.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 2 )