By Topic

LQ Optimal Sliding Mode Supply Policy for Periodic Review Inventory Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Przemyslaw Ignaciuk ; Institute of Automatic Control, Technical University of Lodz, Lodz, Poland ; Andrzej Bartoszewicz

In this technical note, the problem of inventory management in supply chain is addressed from a control theory perspective. In the analyzed setting, the stock used to satisfy an unknown, time-varying demand can be replenished from several supply sources. The replenishment orders are realized with delay which differs among suppliers and transport alternatives. A novel sliding-mode inventory policy is proposed, which guarantees that the demand is always entirely satisfied from the on-hand stock (yielding zero lost-sales cost), the warehouse capacity is not exceeded (what eliminates the risk of high-cost emergency storage) and ordered goods are not returned to the suppliers. As opposed to the classical, stochastic approaches, the parameters of the proposed controller are selected by minimizing a quadratic cost functional, which ensures an optimal dynamical performance of inventory systems with disparate lead times.

Published in:

IEEE Transactions on Automatic Control  (Volume:55 ,  Issue: 1 )