By Topic

Toward a Highly Accurate Ambulatory System for Clinical Gait Analysis via UWB Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaban, H.A. ; Arab Acad. for Sci. & Technol., Virginia Polytech. Inst. & State Univ. at Alexandria (VT-MENA), Alexandria, Egypt ; El-Nasr, M.A. ; Buehrer, R.Michael

In this paper, we propose and investigate a low-cost and low-complexity wireless ambulatory human locomotion tracking system that provides a high ranging accuracy (intersensor distance) suitable for the assessment of clinical gait analysis using wearable ultra wideband (UWB) transceivers. The system design and transceiver performance are presented in additive-white-Gaussian noise and realistic channels, using industry accepted channel models for body area networks. The proposed system is theoretically capable of providing a ranging accuracy of 0.11 cm error at distances equivalent to interarker distances, at an 18 dB SNR in realistic on-body UWB channels. Based on real measurements, it provides the target ranging accuracy at an SNR = 20 dB. The achievable accuracy is ten times better than the accuracy reported in the literature for the intermarker-distance measurement. This makes it suitable for use in clinical gait analysis, and for the characterization and assessment of unstable mobility diseases, such as Parkinson's disease.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 2 )