By Topic

Robust High-Resolution Fine OCT Needle for Side-Viewing Interstitial Tissue Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Wu, Yicong ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Jiefeng Xi ; Li Huo ; Padvorac, J.
more authors

Fine optical coherence tomography (OCT) imaging needles that can be integrated with a standard biopsy needle have been developed with a new optics design to improve the optical quality and mechanical robustness, where a fiber-optic lens (that is spliced to a single-mode fiber) and a microreflector are encased within a microglass tube. The design also minimizes the cylindrical lens effect induced by the glass tube and eases the needle assembly process. Real-time cross-sectional OCT imaging of various tissue samples were performed ex vivo using the miniature-imaging needle along with a 1300-nm swept-source OCT system. The preliminary results demonstrate the improved mechanical and optical performance and suggest the potential of the fine OCT needle for minimally invasive interstitial imaging and image-guided biopsy.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 4 )