Cart (Loading....) | Create Account
Close category search window

Band selection for hyperspectral imagery using affinity propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qian, Y. ; Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China ; Yao, F. ; Jia, S.

Hyperspectral imagery generally contains enormous amounts of data because of hundreds of spectral bands. Band selection is often adopted to reduce computational cost and accelerate knowledge discovery and other tasks such as subsequent classification. An exemplar-based clustering algorithm termed affinity propagation for band selection is proposed. Affinity propagation is derived from factor graph, and operates by initially considering all data points as potential cluster centres (exemplars) and then exchanging messages between data points until a good set of exemplars and clusters emerges. Affinity propagation has been applied to computer vision and bioinformatics, and shown to be much faster than other clustering methods for large data. By combining the information about the discriminative capability of each individual band and the correlation/similarity between bands, the exemplars generated by affine propagation have higher importance and less correlation/similarity. The performance of band selection is evaluated through a pixel image classification task. Experimental results demonstrate that, compared with some popular band selection methods, the bands selected by affinity propagation best characterise the hyperspectral imagery from the pixel classification standpoint.

Published in:

Computer Vision, IET  (Volume:3 ,  Issue: 4 )

Date of Publication:

December 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.