By Topic

Absolute density-profile tomography of molecular beams using multiphoton ionization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schofield, N.E. ; School of Physics, Monash University, Victoria 3800, Australia ; Paganin, D.M. ; Bishop, A.I.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3264079 

We describe an approach for the absolute density measurement of rotationally symmetric molecular beams via multiphoton ionization. This simple single-projection tomographic technique requires only knowledge of the spatial intensity profile and ionization characteristics of the focused laser beam that probes the pulsed molecular jet. Multiphoton ionization (MPI) of a xenon beam allowed tomographic reconstruction of a two-dimensional density profile with a peak density of (4.2±0.4)×1018 m-3, which was compared with the theoretical predictions of the sudden freeze model. An analytic solution to the Abel transform is derived for Gaussian projected density profiles which greatly simplifies the reconstruction of the absolute radial density. MPI is sufficiently general that this technique can be readily applied to atomic beams with a broad range of chemistries.

Published in:

Review of Scientific Instruments  (Volume:80 ,  Issue: 12 )