Cart (Loading....) | Create Account
Close category search window
 

Nanostructuring of epitaxial graphene layers on SiC by means of field-induced atomic force microscopy modification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rius, G. ; Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain ; Camara, N. ; Godignon, P. ; Perez-Murano, F.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3250208 

Micrometer-size graphene ribbons are generated by epitaxial growth on SiC substrates and contacted by electron beam lithography. The isolated graphene islands are patterned at nanometer scale by atomic force microscopy (AFM) under the application of an external polarization to the graphene layers. Contrary to previous reports, the patterning can be made at positive and negative polarizations and using significantly lower absolute voltages. The technique is used to tune the electrical resistance of the graphene ribbons. Combination of graphitization of SiC and AFM nanopatterning is, in consequence, a powerful approach for the fabrication of prototyped graphene-based nanoelectronic devices.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:27 ,  Issue: 6 )

Date of Publication:

Nov 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.