By Topic

Modal Characterization of Power-Line Filter Capacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
A. M. Sanchez ; Grup de Recerca en Electromagn. i Comunicacions (GRECO), Univ. Ramon Llull (URL), Barcelona, Spain ; A. Perez ; J. R. Regue ; M. Ribo
more authors

A typical power-line filter is composed, essentially, by common-mode chokes, X-class and Y-class capacitors. A good characterization of these components is needed to develop a technique to design the optimal power-line filter for an electric or electronic device by finding their best values. In this paper, a new methodology to characterize the behavior of power-line filter capacitors is presented. This methodology is based on a model where common-mode and differential-mode interference are separated into different ports in order to facilitate the study of the propagation phenomena. The methodology is used to explain modal conversion inside impedance networks with X-class and Y-class capacitors, to predict the common-mode and differential-mode emissions when these capacitors are connected to electric or electronic devices, and to improve the classical methodology of power-line filter implementation finding the optimal capacitances of the impedance networks. This new methodology has been successfully tested by using real measurements from capacitors and electric devices.

Published in:

IEEE Transactions on Power Delivery  (Volume:25 ,  Issue: 1 )