By Topic

Developmental Stereo: Emergence of Disparity Preference in Models of the Visual Cortex

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mojtaba Solgi ; Department of Computer Science and Engineering, Michigan State University, East Lansing ; Juyang Weng

How our brains develop disparity tuned V1 and V2 cells and then integrate binocular disparity into 3-D perception of the visual world is still largely a mystery. Moreover, computational models that take into account the role of the 6-layer architecture of the laminar cortex and temporal aspects of visual stimuli are elusive for stereo. In this paper, we present cortex-inspired computational models that simulate the development of stereo receptive fields, and use developed disparity sensitive neurons to estimate binocular disparity. Not only do the results show that the use of top-down signals in the form of supervision or temporal context greatly improves the performance of the networks, but also results in biologically compatible cortical maps-the representation of disparity selectivity is grouped, and changes gradually along the cortex. To our knowledge, this work is the first neuromorphic, end-to-end model of laminar cortex that integrates temporal context to develop internal representation, and generates accurate motor actions in the challenging problem of detecting disparity in binocular natural images. The networks reach a subpixel average error in regression, and 0.90 success rate in classification, given limited resources.

Published in:

IEEE Transactions on Autonomous Mental Development  (Volume:1 ,  Issue: 4 )